Astronomy

Satellites

Moons - also called satellites - come in many shapes, sizes and types. They are generally solid bodies, and few have atmospheres. Most of the planetary moons probably formed from the discs of gas and dust circulating around planets in the early solar system.

Most moons in our solar system are named for mythological characters from a wide variety of cultures. Uranus is the exception. Uranus' moons are named for characters in William Shakespeare's plays and from Alexander Pope's poem "Rape of the Lock." Moons are given provisional designations such as S/2009 S1, the first satellite discovered at Saturn in 2009. The International Astronomical Union approves an official name when the discovery is confirmed.

Astronomers have found at least 146 moons orbiting planets in our solar system. This number does not include the six moons of the dwarf planets, nor does this tally include the tiny satellites that orbit some asteroids and other celestial objects. Another 25 moons are awaiting official confirmation of their discovery.

Of the terrestrial (rocky) planets of the inner solar system, neither Mercury nor Venus have any moons at all, Earth has one and Mars has its two small moons. In the outer solar system, the gas giants Jupiter and Saturn and the ice giants Uranus and Neptune have numerous moons. As these planets grew in the early solar system, they were able to capture objects with their large gravitational fields.

Earth's Moon probably formed when a large body about the size of Mars collided with Earth, ejecting a lot of material from our planet into orbit. Debris from the early Earth and the impacting body accumulated to form the Moon approximately 4.5 billion years ago (the age of the oldest collected lunar rocks). Twelve American astronauts landed on the Moon during NASA's Apollo program from 1969 to 1972, studying the Moon and bringing back rock samples.

Usually the term moon brings to mind a spherical object, like Earth's Moon. The two moons of Mars, Phobos and Deimos, are different. While both have nearly circular orbits and travel close to the plane of the planet's equator, they are lumpy and dark. Phobos is slowly drawing closer to Mars and could crash into the planet in 40 or 50 million years. Or the planet's gravity might break Phobos apart, creating a thin ring around Mars.

Jupiter has 50 known moons (plus 16 awaiting official confirmation), including the largest moon in the solar system, Ganymede. Many of Jupiter's outer moons have highly elliptical orbits and orbit backwards (opposite to the spin of the planet). Saturn, Uranus and Neptune also have some irregular moons, which orbit far from their respective planets.

Saturn has 53 known moons (plus 9 awaiting official confirmation). The chunks of ice and rock in Saturn's rings (and the particles in the rings of the other outer planets) are not considered moons, yet embedded in Saturn's rings are distinct moons or moonlets. These shepherd moons help keep the rings in line. Saturn's moon Titan, the second largest in the solar system, is the only moon with a thick atmosphere.

In the realm of the ice giants, Uranus has 27 known moons. The inner moons appear to be about half water ice and half rock. Miranda is the most unusual; its chopped-up appearance shows the scars of impacts of large rocky bodies.

Neptune has 13 known moons. And Neptune's moon Triton is as big as the dwarf planet Pluto and orbits backwards compared with Neptune's direction of rotation.

Pluto's large moon Charon is about half the size of Pluto. Like Earth's Moon, Charon may have formed from debris resulting from an early collision of an impactor with Pluto. In 2005, scientists using the Hubble Space Telescope to study Pluto found two additional, but very small, moons. The little moons Nix and Hydra are about two to three times as far from Pluto as Charon and roughly 5,000 times fainter than Pluto. Eris, another dwarf planet even more distant than Pluto, has a small moon of its own, named Dysnomia. Haumea, another dwarf planet, has two satellites, Hi'iaka and Namaka.

Large Satellites

Ganymede is the largest satellite in our solar system. It is larger than Mercury and Pluto, and three-quarters the size of Mars. If Ganymede orbited the sun instead of orbiting Jupiter, it would easily be classified as a planet.

Ganymede was discovered by Galileo Galilei on 7 January 1610. The discovery, along with three other Jovian moons, was the first time a moon was discovered orbiting a planet other than Earth. The discovery of the four Galilean satellites eventually led to the understanding that planets in our solar system orbit the sun, instead of our solar system revolving around Earth.

Galileo originally called Jupiter's moons the Medicean planets, after the Medici family and referred to the individual moons numerically as I, II, III, and IV. Galileo's naming system would be used for a couple of centuries.

It wouldn't be until the mid-1800's that the names of the Galilean moons, Io, Europa, Ganymede, and Callisto, would be officially adopted, and only after it became apparent that naming moons by number would be very confusing as new additional moons were being discovered.

In mythology, Ganymede ("GAN uh meed") was a beautiful young boy who was carried to Olympus by Zeus (the Greek equivalent of the Roman god Jupiter) disguised as an eagle. Ganymede became the cupbearer of the Olympian gods.

Ganymede has three main layers. A sphere of metallic iron at the center (the core, which generates a magnetic field), a spherical shell of rock (mantle) surrounding the core, and a spherical shell of mostly ice surrounding the rock shell and the core. The ice shell on the outside is very thick, maybe 800 km (497 miles) thick. The surface is the very top of the ice shell. Though it is mostly ice, the ice shell might contain some rock mixed in. Scientists believe there must be a fair amount of rock in the ice near the surface. Ganymede's magnetic field is embedded inside Jupiter's massive magnetosphere.

Astronomers using the Hubble Space Telescope found evidence of thin oxygen atmosphere on Ganymede in 1996. The atmosphere is far too thin to support life as we know it.

In 2004, scientists discovered irregular lumps beneath the icy surface of Ganymede. The irregular masses may be rock formations, supported by Ganymede's icy shell for billions of years. This tells scientists that the ice is probably strong enough, at least near the surface, to support these possible rock masses from sinking to the bottom of the ice. However, this anomaly could also be caused by piles of rock at the bottom of the ice.

Spacecraft images of Ganymede show the moon has a complex geological history. Ganymede's surface is a mixture of two types of terrain. Forty percent of the surface of Ganymede is covered by highly cratered dark regions, and the remaining sixty percent is covered by a light grooved terrain, which forms intricate patterns across Ganymede. The term "sulcus," meaning a groove or burrow, is often used to describe the grooved features. This grooved terrain is probably formed by tensional faulting or the release of water from beneath the surface. Groove ridges as high as 700 m (2,000 feet) have been observed and the grooves run for thousands of kilometers across Ganymede's surface. The grooves have relatively few craters and probably developed at the expense of the darker crust. The dark regions on Ganymede are old and rough, and the dark cratered terrain is believed to be the original crust of the satellite. Lighter regions are young and smooth (unlike Earth's Moon). The largest area on Ganymede is called Galileo Regio.

The large craters on Ganymede have almost no vertical relief and are quite flat. They lack central depressions common to craters often seen on the rocky surface of the Moon. This is probably due to slow and gradual adjustment to the soft icy surface. These large phantom craters are called palimpsests, a term originally applied to reused ancient writing materials on which older writing was still visible underneath newer writing. Palimpsests range from 50 to 400 km in diameter. Both bright and dark rays of ejecta exist around Ganymede's craters - rays tend to be bright from craters in the grooved terrain and dark from the dark cratered terrain.

Titan was discovered on 25 March 1655 by the Dutch astronomer Christiaan Huygens.

The name Titan comes from a generic term for the children of Ouranos and Gaia. In the Orphic version, the Titans are the ancestors of the human race. The Titans were known to have devoured the limbs of Dionysus, the son of Zeus. Enraged, Zeus struck the Titans with lightning. (Zeus had intended this child to have dominion over the world.) The lightning burned the Titans to ashes, and from the ashes man was formed.

With an equatorial radius of 2,575 km (1,600 miles), Titan is the second largest moon in our solar system. It's bigger than our own Moon and even the planet Mercury. Only Jupiter's moon Ganymede is larger than Titan, with a diameter barely 112 km (62 miles) greater.

The temperature at Titan's surface is about -289 degrees Fahrenheit (-178 degrees Celsius).

Titan orbits Saturn at a distance of about 1.2 million km (745,000 miles), taking almost 16 days to complete a full orbit.

Titan is of great interest to scientists because it is the only moon in the solar system known to have clouds and a mysterious, thick, planet-like atmosphere. In 1980, NASA's Voyager 1 spacecraft tried to take close up images of the natural features of Titan's landscape, but was unable to penetrate the thick clouds. Instead, the images showed only slight color and brightness variations in the atmosphere. Titan's atmospheric pressure is about 60 percent greater than the Earth's -- roughly the same pressure found at the bottom of a swimming pool.

In 1994, NASA's Hubble Space Telescope recorded pictures of Titan, which suggested that a huge bright "continent" exists on the hemisphere that faces forward in orbit. These Hubble results don't prove that liquid "seas" exist, however; only that Titan has large bright and dark regions on its surface.

NASA's Cassini-Huygens spacecraft (currently orbiting Saturn) should shed new light on Titan's mysteries. The spacecraft's instruments are designed to reveal many of Titan's characteristics. During dozens of flybys, the Cassini orbiter will map Titan with cloud-penetrating radar and collect atmospheric data. The Huygens probe dove through Titan's dense atmosphere on 14 January 2005 with instruments capable of analyzing its components.

Combined with the "big picture" information that the Cassini orbiter will collect during Titan flybys, data from the Huygens probe will provide scientists with critical information that may shed light on ancient questions such as "Where did we come from?" and, "How did the planets form?"

Because of the extremely cold temperatures typical of celestial bodies that are that far away from the sun, the structure of Titan's chemical atmosphere is in a state of deep freeze. It is this chemical composition that interests scientists a great deal because Titan's atmosphere might consist of compounds similar to those present in the primordial days of the Earth's atmosphere. Titan's thick cloudy atmosphere is mostly nitrogen, like Earth's, but may contain much higher percentages of "smog-like" chemicals such as methane and ethane. The smog may be so thick that it actually rains "gasoline-like" liquids. The organic nature of some of the chemicals found in Titan's atmosphere might indicate that this fascinating moon could harbor some form of life.

With a diameter of over 4,800 km (2,985 miles), Callisto is the third largest satellite in the solar system and is almost the size of Mercury. Callisto is the outermost of the Galilean satellites, and orbits beyond Jupiter's main radiation belts. It has the lowest density of the Galilean satellites (1.86 grams/cubic cm). Its interior is probably similar to Ganymede except the inner rocky core is smaller, and this core is surrounded by a large icy mantle. Callisto's surface is the darkest of the Galileans, but it is twice as bright as our own Moon.

Callisto was discovered on 7 January 1610 by Galileo Galilei. The discovery, along with three other Jovian moons, was the first time a moon was discovered orbiting a planet other than Earth. The discovery of the four Galilean satellites eventually led to the understanding that planets in our solar system orbit the sun, instead of our solar system revolving around Earth.

Galileo originally called Jupiter's moons the Medicean planets, after the Medici family and referred to the individual moons numerically as I, II, III, and IV. Galileo's naming system would be used for a couple of centuries.

It wouldn't be until the mid-1800s that the names of the Galilean moons, Io, Europa, Ganymede, and Callisto, would be officially adopted, and only after it became apparent that naming moons by number would be very confusing as new additional moons were being discovered.

Callisto was originally designated Jupiter IV by Galileo because it is the fourth satellite of Jupiter. Callisto is named for the beautiful daughter of Lycaon, who followed the chaste goddess of the hunt, Artemis. Unfortunately, since Callisto was seduced by Zeus (the Greek equivalent of the Roman god Jupiter) and became pregnant she was banished by Artemis. Zeus changed Callisto into a bear to protect her from his wife Hera's jealousy. Later, Zeus placed Callisto and their son in the sky, and mother and son became Ursa Major and Ursa Minor (Great Bear and Little Bear).

Callisto is the most heavily cratered object in the solar system. It is thought to be a long dead world, with hardly any geologic activity on its surface. In fact, Callisto is the only body greater than 1000 km in diameter in the solar system that has shown no signs of undergoing any extensive resurfacing since impacts have molded its surface. With a surface age of about 4 billion years, Callisto has the oldest landscape in the solar system.

Looking like a giant pizza covered with melted cheese and splotches of tomato and ripe olives, Io is the most volcanically active body in the solar system. Volcanic plumes rise 300 km (190 miles) above the surface, with material spewing out at nearly half the required escape velocity.

A bit larger than Earth's Moon, Io is the third largest of Jupiter's moons, and the fifth one in distance from the planet.

Io was discovered on 8 January 1610 by Galileo Galilei. The discovery, along with three other Jovian moons, was the first time a moon was discovered orbiting a planet other than Earth. The discovery of the four Galilean satellites eventually led to the understanding that planets in our solar system orbit the sun, instead of our solar system revolving around Earth. Galileo apparently had observed Io on 7 January 1610, but had been unable to differentiate between Io and Europa until the next night.

Galileo originally called Jupiter's moons the Medicean planets, after the Medici family and referred to the individual moons numerically as I, II, III, and IV. Galileo's naming system would be used for a couple of centuries.

It wouldn't be until the mid-1800s that the names of the Galilean moons, Io, Europa, Ganymede, and Callisto, would be officially adopted, and only after it became apparent that naming moons by number would be very confusing as new additional moons were being discovered.

Io was originally designated Jupiter I by Galileo because it is the first satellite of Jupiter. Io is named for the daughter of Inachus, who was raped by Jupiter. Jupiter, in an effort to hide his crime from his wife, Juno, transformed Io into a heifer.

Although Io always points the same side toward Jupiter in its orbit around the giant planet, the large moons Europa and Ganymede perturb Io's orbit into an irregularly elliptical one. Thus, in its widely varying distances from Jupiter, Io is subjected to tremendous tidal forces. These forces cause Io's surface to bulge up and down (or in and out) by as much as 100 m (330 feet)! Compare these tides on Io's solid surface to the tides on Earth's oceans. On Earth, in the place where tides are highest, the difference between low and high tides is only 18 m (60 feet), and this is for water, not solid ground!

This tidal pumping generates a tremendous amount of heat within Io, keeping much of its subsurface crust in liquid form seeking any available escape route to the surface to relieve the pressure. Thus, the surface of Io is constantly renewing itself, filling in any impact craters with molten lava lakes and spreading smooth new floodplains of liquid rock. The composition of this material is not yet entirely clear, but theories suggest that it is largely molten sulphur and its compounds (which would account for the varigated coloring) or silicate rock (which would better account for the apparent temperatures, which may be too hot to be sulphur). Sulfur dioxide is the primary constituent of a thin atmosphere on Io. It has no water to speak of, unlike the other, colder Galilean moons. Data from the Galileo spacecraft indicates that an iron core may form Io's center, thus giving Io its own magnetic field.

Io's orbit, keeping it at more or less a cozy 422,000 km (262,000 miles) from Jupiter, cuts across the planet's powerful magnetic lines of force, thus turning Io into a electric generator. Io can develop 400,000 volts across itself and create an electric current of 3 million amperes. This current takes the path of least resistance along Jupiter's magnetic field lines to the planet's surface, creating lightning in Jupiter's upper atmosphere.

As Jupiter rotates, it takes its magnetic field around with it, sweeping past Io and stripping off about 1,000 kg (1 ton) of Io's material every second! This material becomes ionized in the magnetic field and forms a doughnut-shaped cloud of intense radiation referred to as a plasma torus. Some of the ions are pulled into Jupiter's atmosphere along the magnetic lines of force and create auroras in the planet's upper atmosphere. It is the ions escaping from this torus that inflate Jupiter's magnetosphere to over twice the size we would expect.

Our Moon makes Earth a more livable planet by moderating our home planet's wobble on its axis, leading to a relatively stable climate, and creating a rhythm that has guided humans for thousands of years. The Moon was likely formed after a Mars-sized body collided with Earth and the debris formed into the most prominent feature in our night sky.

Earth's only natural satellite is simply called the Moon because people didn't know other moons existed until Galileo Galilei discovered four moons orbiting Jupiter in 1610. Other moons in our solar system are given names so they won't be confused with each other. We call them moons because, like our own, they are natural satellites orbiting a solar system body (which in turn is orbiting a star).

The regular daily and monthly rhythms of Earth's only natural satellite, the Moon, have guided timekeepers for thousands of years. Its influence on Earth's cycles, notably tides, has been charted by many cultures in many ages.

The presence of the Moon moderates Earth's wobble on its axis, leading to a relatively stable climate over billions of years. From Earth, we always see the same face of the Moon because the Moon rotates once on its own axis in the same time that it travels once around Earth (called synchronous rotation).

The light areas of the Moon are known as the highlands. The dark features, called maria (Latin for seas), are impact basins that were filled with lava between 4 and 2.5 billion years ago.

Though the Moon has no internally generated magnetic field, areas of magnetism are preserved in the lunar crust, but how this occurred is a mystery. The early Moon appears not to have had the right conditions to develop an internal dynamo, the mechanism for global magnetic fields for the terrestrial planets.

How did the Moon come to be? The leading theory is that a Mars-sized body collided with Earth approximately 4.5 billion years ago, and the resulting debris from both Earth and the impactor accumulated to form our natural satellite. The newly formed Moon was in a molten state. Within about 100 million years, most of the global "magma ocean" had crystallized, with less dense rocks floating upward and eventually forming the lunar crust.

With essentially no atmosphere to impede impacts, a steady rain of asteroids, meteoroids and comets strike the surface. Over billions of years, the surface has been ground up into fragments ranging from huge boulders to powder. Nearly the entire Moon is covered by a rubble pile of charcoal-gray, powdery dust and rocky debris called the lunar regolith. Beneath the regolith is a region of fractured bedrock referred to as the megaregolith.

Four impact structures are used to date objects on the Moon: the Nectaris and Imbrium basins and the craters Eratosthenes and Copernicus. Lunar history is based on time segments bounded by the age of each impact structure. A Copernican feature, for example, is as young or younger than the impact crater Copernicus, that is, about one billion years old or less.

The Moon was first visited by the USSR's Luna 1 and Luna 2 in 1959. These were followed by a number of U.S. and Soviet robotic spacecraft. The U.S. sent three classes of robotic missions to prepare the way for human exploration: the Rangers (1961-1965) were impact probes, the Lunar Orbiters (1966-1967) mapped the surface to find landing sites and the Surveyors (1966-1968) were soft landers.

The first human landing on the Moon was on 20 July 1969. During the Apollo missions of 1969-1972, 12 American astronauts walked on the Moon and used a Lunar Roving Vehicle to travel on the surface and extend their studies of soil mechanics, meteoroids, lunar ranging, magnetic fields and solar wind. The Apollo astronauts brought back 382 kg (842 pounds) of rock and soil to Earth for study.

After a long hiatus, lunar exploration resumed in the 1990s with the U.S. robotic missions Clementine and Lunar Propspector. Results from both missions suggest that water ice may be present at the lunar poles, but a controlled impact of the Prospector spacecraft produced no observable water.

A new era of international lunar exploration began in earnest in the new millennium. The European Space Agency was first with SMART-1 in 2003, followed by three spacecraft from other nations during the years 2007 and 2008: Kaguya (Japan), Chang'e-1 (China), and Chandrayaan-1 (India). The U.S. began a new series of robotic lunar missions with the joint launch of the Lunar Reconnaissance Orbiter and LCROSS in 2009. More missions are planned in anticipation of sending human beings back to the Moon.

Jupiter's icy moon Europa is slightly smaller than the Earth's Moon. Like the Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole surface of Europa, and being far from the sun, the ocean surface is globally frozen over.

Europa was discovered on 8 January 1610 by Galileo Galilei. The discovery, along with three other Jovian moons, was the first time a moon was discovered orbiting a planet other than Earth. The discovery of the four Galilean satellites eventually led to the understanding that planets in our solar system orbit the sun, instead of our solar system revolving around Earth. Galileo apparently had observed Europa on 7 January 1610, but had been unable to differentiate it from Io until the next night.

Galileo originally called Jupiter's moons the Medicean planets, after the Medici family and referred to the individual moons numerically as I, II, III, and IV. Galileo's naming system would be used for a couple of centuries.

It wouldn't be until the mid-1800s that the names of the Galilean moons, Io, Europa, Ganymede, and Callisto, would be officially adopted, and only after it became apparent that naming moons by number would be very confusing as new additional moons were being discovered.

Europa was originally designated Jupiter II by Galileo because it was the second satellite of Jupiter. Europa is named for the daughter of Agenor. Europa was abducted by Zeus (the Greek equivalent of the Roman god Jupiter), who had taken the shape of a spotless white bull. Europa was so delighted by the gentle beast that she decked it with flowers and rode upon its back. Zeus seizing his opportunity rode away with her into the ocean to the island of Crete, where he transformed back into his true shape. Europa bore Zeus many children, including Minos.

Europa orbits Jupiter every 3.5 days and is phase locked - just like Earth's Moon - so that the same side of Europa faces Jupiter at all times. However, because Europa's orbit is eccentric (i.e. an oval or ellipse not a circle) when it is close to Jupiter the tide is much higher than when it is far from Jupiter. Thus tidal forces raise and lower the sea beneath the ice, causing constant motion and likely causing the cracks we see in images of Europa's surface from visiting robotic probes.

This "tidal heating" causes Europa to be warmer than it would otherwise be at its average distance of about 780,000,000 km (485,000,000 miles) from the sun, more than five times as far as the distance from the Earth to the sun. The warmth of Europa's liquid ocean could prove critical to the survival of simple organisms within the ocean, if they exist.

Triton is the largest of Neptune's 13 moons. It is unusual because it is the only large moon in our solar system that orbits in the opposite direction of its planet's rotation -- a retrograde orbit.

Scientists think Triton is a Kuiper Belt Object captured by Neptune's gravity millions of years ago. It shares many similarities with Pluto, the best known world of the Kuiper Belt. Like our own moon, Triton is locked in synchronous rotation with Neptune - one side faces the planet at all times. But because of its unusual orbital inclination both polar regions take turns facing the Sun.

Triton has a diameter of 2,700 km (1,680 miles). Spacecraft images show the moon has a sparsely cratered surface with smooth volcanic plains, mounds and round pits formed by icy lava flows. Triton consists of a crust of frozen nitrogen over an icy mantle believed to cover a core of rock and metal. Triton has a density of about 2.050 g per cubic cm (The density of water is 1.0 g per cubic cm.) This is a higher density than that measured for almost any other satellite of an outer planet. (Europa and Io have higher densities.) This implies that Triton contains more rock in its interior than the icy satellites of Saturn and Uranus.

Triton was discovered on 10 October 1846 by British astronomer William Lassell, just 17 days after Neptune itself was discovered by German astronomers Johann Gottfried Galle and Heinrich Louis d'Arrest.

Triton's thin atmosphere is composed mainly of nitrogen with small amounts of methane. This atmosphere most likely originates from Triton's volcanic activity, which is driven by seasonal heating by the Sun. Triton, Io and Venus are the only bodies in the solar system besides Earth that are known to be volcanically active at the present time.

Triton is one of the coolest objects in our solar system. It is so cold that most of Triton's nitrogen is condensed as frost, giving its surface an icy sheen that reflects 70 percent of the sunlight that hits it. NASA's Voyager 2 - the only spacecraft to fly past Neptune and Triton - found surface temperatures of -235°C (-391°F). During its 1989 flyby, Voyager 2 also found Triton has active geysers, making it one of the few geologically active moons in our solar system.

Moons of Neptune are named for characters from Greek or Roman mythology associated with Neptune or Poseidon, or the oceans. Irregular satellites are named for the Nereids, daughters of Nereus and Doris and the attendants of Neptune. Triton is named after the son of Poseidon (the Greek god comparable to the Roman Neptune). Until the discovery of the second moon Nereid in 1949, Triton was commonly known as simply "the satellite of Neptune."